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Enhancement of noise-induced escape through the existence of a chaotic saddle
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We study the noise-induced escape process in a prototype dissipative nonequilibrium system, the Ikeda map.
In the presence of a chaotic saddle embedded in the basin of attraction of the metastable state, we find the novel
phenomenon of a strong enhancement of noise-induced escape. This result is established by employing the
theory of quasipotentials. Our finding is of general validity and should be experimentally observable.
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Since the seminal treatment by Kramers of the noi
induced escape problem@1#, major progress has been ma
by Onsager and Machlup. They realized that the escape
cess consists of large fluctuations, which are very rare,
that the trajectory peaks sharply around some optimal~most
probable! escape path@2#. Thus, despite the stochastic natu
of the escape process, the escape path is of an almost d
ministic nature, as paths other than the most probable
have an exponentially smaller probability. That theory w
derived for a small noise leveld→0. A review on noise-
induced escape in equilibrium systems and the most im
tant recent advancements is given in@3#.

In the past decade, it has been realized that systems
are not in thermal equilibrium or are lacking the property
detailed balance can give rise to a large variety of interes
phenomena in the noise-induced escape problem. Only
cently experiments on this problem have been conduc
using Josephson junctions, electronic circuits, lasers, an
electron in a Penning trap@4#. Some of the most interestin
novel theoretical findings include a preexponential factor
the Kramers rate@5#, a symmetry breaking bifurcation of th
optimal escape path@6#, and a distribution of the escap
paths originating from a cusp point singularity@7#. Further-
more, the very intriguing phenomenon of saddle-point avo
ance has been discovered@8#. For a fluctuating barrier the
effect of resonant activation has been theoretically predic
@9# and experimentally confirmed@10#. Also a stepwise
growth of the escape rate for short time scales has b
found @11#. Recently, an oscillation of the escape rate in d
pendence on the friction for a multiwell potential was de
onstrated@12#. For periodically driven systems, a number
interesting results have been obtained as well, such as a
nant decrease in the activation energy@13#, a logarithmic
susceptibility of the fluctuation probability@14#, time oscil-
lations of escape rates@15#, and enhancement of escape d
to transient chaos@16#.

Here we report on a mechanism of lowering the requi
energy for noise-induced escape~enhancement of escape!,
thus a reduction of the mean first passage time. This hap
if a chaotic saddle is embedded in the open neighborhoo
the basin of a metastable state. Then the escape traje
does not only pass through a single unstable periodic o
@17#. By contrast, it can pass through the chaotic saddle,
a geometrically strange, invariant, nonattracting set~which is
made up of an infinite number of unstable periodic orbit!.
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The trajectory can jump between points of the chaotic sad
with no additional activation energy required. The over
lowering of the activation threshold is due to the fact that
escape process consists now of three subsequent steps:
the trajectory jumps on one orbit on the chaotic saddle. S
ondly, it switches on the chaotic saddle, without the need
input energy, to select the orbit that allows the easiest esc
Thirdly it fluctuates from that orbit to the saddle point on t
basin boundary. By this mechanism, the chaotic saddle
transformed into a dynamically relevant quantity, whereas
noise-free systems it is only important for transient behav
In this way, the chaotic saddle acts as a ‘‘shortcut.’’ Sin
noise-induced escape has previously been studied using
sipative maps@18#, which allow analysis in a straightforwar
way, we demonstrate our findings for the Ikeda map@19#.
This is an idealized model of a laser pulse in an opti
cavity. With complex variables, it has the form

zn115a1bznexpF ik2
ih

11uznu2G , ~1!

wherezn5xn1 iyn is related to the amplitude and phase
the nth laser pulse exiting the cavity. The parametera is the
laser input amplitude and corresponds to the forcing of
system. The damping (12b) accounts for the reflection
properties of mirrors in the cavity and measures the diss
tion. The empty cavity detuning is given byk and the detun-
ing due to a nonlinear dielectric medium byh. The Ikeda
map gives rise to rich dynamical behavior, exhibiting f
some parameters even highly multistable behavior@20#.

We fix the parameters ata50.85, b50.9, andk50.4
and vary onlyh in the range 2.6,h,12. For the noiseless
system, two stable states are present. One fixed point~state
A, L in Fig. 1! undergoes a period-doubling scenario a
becomes a chaotic attractor ath'5.17. Another fixed point
~stateB, h in Fig. 1! remains a fixed point over the whol
parameter range considered. The noise-induced escape
stateA is investigated. The basin boundary separating th
two stable states is a smooth curve which is built by
stable manifold of the saddle pointC (* in Fig. 1!, separating
the two stable states. With the above-mentioned feature
the system, there are no unusual effects expected in
noise-induced escape problem. However, for some small
rameter ranges additional periodic orbits are also present.
©2003 The American Physical Society04-1
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a critical value ofhc53.6397 an additional period-3 solutio
close to the fixed point~stateA) emerges, with a fractal basi
boundary between these two solutions and a chaotic sa
embedded in this fractal basin boundary. It is important
note that the basin boundary between the two fixed po
remains smooth over the whole parameter range consid
here. Increasingh further, the stable period-3 solution disa
pears in a boundary crisis, yet a chaotic saddle isstill present
beyond the boundary crisis, completely embedded in
open neighborhood of the basin of the stable solution, as
be seen in Fig. 1 forh54.1. A chaotic saddle is a geometr
cally strange, invariant, nonattracting set. It is computed
ing the PIM-triple algorithm@21#. We stress that it is the
chaotic saddle that has a remarkable effect on the ave
escape time from the stable fixed point.

To treat the problem of noise-induced escape, we n
employ the theory of quasipotentials, which gives rigoro
results on the influence of noise on the invariant density
the mean first passage time. Quasipotentials have been i
duced in the mathematical literature for time-continuous s
tems in@22# and for discrete time ones in@23#. For systems
of physical interest, they were first proposed in@25# and
extended to systems with coexisting attractors in@26#. Dis-
crete systems with strange invariant sets were treated fo
first time in @27#. Quasipotentials can be derived through
minimization procedure of the action of escape trajecto
from a Hamilton-Jacobi equation@24#. The action to be mini-
mized has the form

SN@~zi !0< i ,N#5
1

2 (
i 50

N21

@zi 112 f ~zi !#
2, ~2!

for the mapzn115 f (zn)1s jn , where s is the standard
deviation of the additive, Gaussian, white noise termjn .
With appropriate boundary conditions, the infimum of th
action with respect toN andi along a path is the quasipoten
tial F. The mean first exit time is then given in analogy
Kramer’s law,

FIG. 1. Gray dots represent the basin of attraction for the fi
point marked with aL for h54.1. The other fixed point is also
depicted (h). The chaotic saddle is shown with black dots and
saddle point on the basin boundary is marked by *.
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s2 G , ~3!

with DF defined as the minimal quasipotential difference

DFª inf$F~y!2F~a!:aPA,yP]G%, ~4!

whereA is the attractor and]G is the basin boundary. In Fig
2, the quasipotential is shown forh54.1. There is a single
peak corresponding to the fixed pointA and a plateau region
of a practically constant quasipotential, which reflects
chaotic saddle. Employing the quasipotential for the noi
induced escape problem, the minimum value ofF(x,y) on
the basin boundary has to be determined. This is exactly
minimum escape energyDF(x,y), since the quasipotentia
at the stable solution~fixed point, periodic orbit, or chaotic
attractor! is zero. The point on the basin boundary, where t
happens, is generally a saddle point of the system.

To quantify the escape process with the quasipotential,
plot for various values ofh the corresponding minimal es
cape energyDF(x,y) in Fig. 3. To elucidate the role of the
chaotic saddle as the origin of an enhancement of no
induced escape, we also include in the plot the value of
height of the plateau in the quasipotential.

In the framework of quasipotentials, the difference
height of the escape energy and the saddle plateau c

d

FIG. 2. QuasipotentialF(x,y) for the Ikeda map withh54.1
on a 3003300 grid. The single peak corresponds to the fixed po
Also, an extended plateau at2 log10F(x,y)'5.0 is visible, caused
by the chaotic saddle.

FIG. 3. Minimal escape energy (L) and height of the saddle
plateau (n) in logarithmic scale~base 10! versush.
4-2
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sponds to the distance between the basin boundary and
chaotic saddle, whereas the height of the saddle is relate
the distance between the attractor and the saddle.

The mechanism of the escape process is closely conne
to the existence of an embedded chaotic saddle. It consis
two steps, namely a noise-induced fluctuation from the
tractor ~stateA) to the chaotic saddle, and then from th
chaotic saddle to the fixed point~stateB) via the saddle point
on the boundary. The escape can also be incomplete, a
trajectory may fall back from the chaotic saddle to the attr
tor. In a successful escape, the chaotic saddle acts
‘‘shortcut,’’ as its presence lowers the overall escape ene
This behavior seems to be especially pronounced if the c
otic saddle is closer to the basin boundary than to the att
tor ~compare the region 3.6<h<4.5 of Fig. 3!. Let us note
that forh55.5, it is not clear if there exists a chaotic sadd
which is the case for all other values ofh>3.6397 we have
tested. The PIM-triple method, as well as the quasipoten
yield for h55.5 no conclusive result, as a chaotic sad
may existvery closeto the chaotic attractor and numerical
it is very difficult to distinguish between the two.

It is important to quantify the influence of the relativ
sizes of the basins of attraction, since it is increasing w
increasingh and here we are only interested in the change
activation energy caused by the chaotic saddle. The dista
between the attractor and the saddle point on the bounda
usually proportional to the relative size of the basin. Bo
quantities are expected to play a role in the stability of
metastable state located in the basin, although we are
aware of any theoretical work dealing with this relation d
rectly. To compensate for the change of escape energy ca
by the increase in size of the basin of attraction, in Fig. 4
escape energy is divided by the ratio of the size of the ba
of attraction of stateA to the overall area (A1B) for three
different sections of the phase space. The sections of
phase space decrease from top to bottom. The combina
of the two quantities—potential height and basin size

FIG. 4. Quasipotential height at basin boundary~5escape en-
ergy! divided by the ratios of the sizes of the basins of attraction@#
no. of initial conditionsA/(A1B)]. The curves correspond to
smaller frame of reference from top to bottom, with th
values xP@210.0,10.0#,yP@210.0,10.0# ~marked with h);
xP@25.0,5.0#,yP@27.0,7.0# ~marked with n); and
xP@23.0,2.0#,yP@23.5,4.0# ~marked with *); respectively.
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yields a pronounced minimum ath'5.0 for all three curves,
thus confirming the essential role in lowering the escape
ergy played by the chaotic saddle.

The most probable escape path@2,22# for h55.0 is
shown, together with the chaotic saddle, in Fig. 5. For t
parameter value, there is a stable period-4 solution. As
be seen, the trajectory jumps at first directly on points of
chaotic saddle, moves secondly along points of the cha
saddle for some iterations, until it is thirdly transported clo
to the basin boundary to the saddle point. Since the first s
~from fixed point to saddle! and the last step~from saddle to
the basin boundary! are minimal in this case, the enhanc
ment is maximal. Other values of the Ikeda map, where
chaotic saddle is present, have been investigated as well
these parameter values, the effect could not be found, and
graphs corresponding to Fig. 4 have a strictly monoto
shape. This demonstrates that the existence of the cha
saddle is of crucial importance for the occurrence of the
hancement of noise-induced escape.

Moreover, the stability of a fixed point is determined b
its eigenvalues. The eigenvalues are found to bel50.9 for
the whole range in which it exists. Consequently, the lin
approximation is of no relevance to the noise-induced esc
problem, as its range of validity is much smaller than t
region for the escape, which is the whole open set of
basin of attraction shown in Fig. 1.

To conclude, we have demonstrated the effect of enhan
ment of noise-induced escape through the existence of a
otic saddle in the open neighborhood of the metastable s
for the Ikeda map as a parameter is varied. Employing
theory of quasipotentials, it was possible to understand
lowering of the escape threshold. We stress that the repo
mechanism of the lowering of the escape energy is o
qualitatively different nature from a recently found effec
where also an enhancement of noise-induced escape thr
transient motion~typical for chaotic saddles! has been found
@16#. In this scenario, a nonadiabatically, periodically driv
system exhibits a facilitation of noise-induced interwell tra
sitions. This occurs because the basin boundary beco
fractal and the distance between the two states is effecti
reduced. In the mechanism reported here, we always ha
smooth basin boundary between the two states and the

FIG. 5. Escape path and chaotic saddle forh55.0. The saddle
point on the basin boundary is shown as *.
4-3
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otic saddle is embedded in the basin of one state, not in
basin boundary between the states. The analysis of the e
escape path on the chaotic saddle, in contrast to the ca
which the trajectory leaves via a single periodic orbit@17#,
will be presented in a much broader fashion in a future p
lication @28#. The reported phenomenon is of general r
evance for many physical and chemical problems. It is p
t,
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dicted to occur in a variety of systems, and should
observable experimentally.
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