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Enhancement of noise-induced escape through the existence of a chaotic saddle
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We study the noise-induced escape process in a prototype dissipative nonequilibrium system, the lkeda map.
In the presence of a chaotic saddle embedded in the basin of attraction of the metastable state, we find the novel
phenomenon of a strong enhancement of noise-induced escape. This result is established by employing the
theory of quasipotentials. Our finding is of general validity and should be experimentally observable.
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Since the seminal treatment by Kramers of the noiseThe trajectory can jump between points of the chaotic saddle
induced escape problefd], major progress has been made with no additional activation energy required. The overall
by Onsager and Machlup. They realized that the escape préswering of the activation threshold is due to the fact that the
cess consists of large fluctuations, which are very rare, an@scape process consists now of three subsequent steps: First,
that the trajectory peaks sharply around some optimaist ~ the trajectory jumps on one orbit on the chaotic saddle. Sec-
probable escape patf2]. Thus, despite the stochastic nature ondly, it switches on the chaotic saddle, without the need of
of the escape process, the escape path is of an almost detéPut energy, to select the orbit that allows the easiest escape.
ministic nature, as paths other than the most probable onghirdly it fluctuates from that orbit to the saddle point on the
have an exponentially smaller probability. That theory waddasin boundary. By this mechanism, the chaotic saddle is
derived for a small noise level—0. A review on noise- transformed into a dynamically relevant quantity, whereas in
induced escape in equilibrium systems and the most impomoise-free systems it is only important for transient behavior.
tant recent advancements is giver #. In this way, the chaotic saddle acts as a “shortcut.” Since

In the past decade, it has been realized that systems th@@ise-induced escape has previously been studied using dis-
are not in thermal equilibrium or are lacking the property ofsipative map$18], which allow analysis in a straightforward
detailed balance can give rise to a large variety of interesting/ay, we demonstrate our findings for the Ikeda nag].
phenomena in the noise-induced escape problem. Only rd-his is an idealized model of a laser pulse in an optical
cently experiments on this problem have been conductedavity. With complex variables, it has the form
using Josephson junctions, electronic circuits, lasers, and an
electron in a Penning trag]. Some of the most interesting
novel theoretical findings include a preexponential factor of Zyoi=a+ bznex;{ix—
the Kramers ratg5], a symmetry breaking bifurcation of the
optimal escape path6], and a distribution of the escape
paths originating from a cusp point singular[t§]. Further- ~ wherez,=Xx,+iy, is related to the amplitude and phase of
more, the very intriguing phenomenon of saddle-point avoidthe nth laser pulse exiting the cavity. The paramedes the
ance has been discoverg8l]. For a fluctuating barrier the laser input amplitude and corresponds to the forcing of the
effect of resonant activation has been theoretically predictegystem. The damping (1b) accounts for the reflection
[9] and experimentally confirmed10]. Also a stepwise properties of mirrors in the cavity and measures the dissipa-
growth of the escape rate for short time scales has beeiipn. The empty cavity detuning is given lzyand the detun-
found[11]. Recently, an oscillation of the escape rate in de-ing due to a nonlinear dielectric medium by The lkeda
pendence on the friction for a multiwell potential was dem-map gives rise to rich dynamical behavior, exhibiting for
onstrated 12]. For periodically driven systems, a number of some parameters even highly multistable behaj26t.
interesting results have been obtained as well, such as a reso-We fix the parameters a&=0.85, b=0.9, andx=0.4
nant decrease in the activation enefd], a logarithmic  and vary only» in the range 2.6 »<<12. For the noiseless
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susceptibility of the fluctuation probabilityi4], time oscil-  system, two stable states are present. One fixed (jstate
lations of escape rat¢45], and enhancement of escape dueA, ¢ in Fig. 1) undergoes a period-doubling scenario and
to transient chaogl6]. becomes a chaotic attractor at=5.17. Another fixed point

Here we report on a mechanism of lowering the requiredstateB, (1 in Fig. 1) remains a fixed point over the whole
energy for noise-induced escapenhancement of escgpe parameter range considered. The noise-induced escape from
thus a reduction of the mean first passage time. This happessateA is investigated. The basin boundary separating these
if a chaotic saddle is embedded in the open neighborhood dfvo stable states is a smooth curve which is built by the
the basin of a metastable state. Then the escape trajectosyable manifold of the saddle poi@t(* in Fig. 1), separating
does not only pass through a single unstable periodic orbihe two stable states. With the above-mentioned features of
[17]. By contrast, it can pass through the chaotic saddle, i.ethe system, there are no unusual effects expected in the
a geometrically strange, invariant, nonattracting(adtich is  noise-induced escape problem. However, for some small pa-
made up of an infinite number of unstable periodic opbits rameter ranges additional periodic orbits are also present. For
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X FIG. 2. Quasipotentiadb(x,y) for the lkeda map withyp=4.1
on a 300x 300 grid. The single peak corresponds to the fixed point.
FIG. 1. Gray dots represent the basin of attraction for the fixed?IS0, an extended plateau atlog;(®(x,y)~5.0 is visible, caused
point marked with a® for »=4.1. The other fixed point is also by the chaotic saddle.
depicted (0). The chaotic saddle is shown with black dots and the
saddle point on the basin boundary is marked by *. F{Aq)
(7)~ex
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a critical value ofy.=3.6397 an additional period-3 solution 7
close to the fixed pointstateA) emerges, with a fractal basin yiish A @ defined as the minimal quasipotential difference,
boundary between these two solutions and a chaotic saddle
embedded in this fractal basin boundary. It is important to
note that the basin boundary between the two fixed points Ad:=inf{®(y)-P(a):acAyedG}, (4)
remains smooth over the whole parameter range considered
here. Increasing further, the stable period-3 solution disap- whereA is the attractor andG is the basin boundary. In Fig.
pears in a boundary crisis, yet a chaotic sadditilspresent 2, the quasipotential is shown fay=4.1. There is a single
beyond the boundary crisis, completely embedded in th@eak corresponding to the fixed poitand a plateau region
open neighborhood of the basin of the stable solution, as ca®f a practically constant quasipotential, which reflects the
be seen in Fig. 1 fory=4.1. A chaotic saddle is a geometri- chaotic saddle. Employing the quasipotential for the noise-
cally strange, invariant, nonattracting set. It is computed usinduced escape problem, the minimum valuedqix,y) on
ing the PIM-triple algorithm[21]. We stress that it is the the basin boundary has to be determined. This is exactly the
chaotic saddle that has a remarkable effect on the averagginimum escape energg®(x,y), since the quasipotential
escape time from the stable fixed point. at the stable solutioffixed point, periodic orbit, or chaotic

To treat the problem of noise-induced escape, we nowattractoy is zero. The point on the basin boundary, where this
employ the theory of quasipotentials, which gives rigoroushappens, is generally a saddle point of the system.
results on the influence of noise on the invariant density and To quantify the escape process with the quasipotential, we
the mean first passage time. Quasipotentials have been intrplot for various values of; the corresponding minimal es-
duced in the mathematical literature for time-continuous syseape energyA®(x,y) in Fig. 3. To elucidate the role of the
tems in[22] and for discrete time ones [23]. For systems chaotic saddle as the origin of an enhancement of noise-
of physical interest, they were first proposed[2b] and induced escape, we also include in the plot the value of the
extended to systems with coexisting attractor$2f]. Dis-  height of the plateau in the quasipotential.
crete systems with strange invariant sets were treated for the In the framework of quasipotentials, the difference in
first time in [27]. Quasipotentials can be derived through aheight of the escape energy and the saddle plateau corre-
minimization procedure of the action of escape trajectories
from a Hamilton-Jacobi equatid24]. The action to be mini- 0f
mized has the form [

1 N—-1
S\(z)o<ien]=3 2 [za—f@)P @

log®(saddle), logAd(x,y)

for the mapz,,,="1(z,)+ 0o &,, whereo is the standard
deviation of the additive, Gaussian, white noise te¢m
With appropriate boundary conditions, the infimum of this
action with respect tl andi along a path is the quasipoten-
tial ®. The mean first exit time is then given in analogy to  FIG. 3. Minimal escape energyX() and height of the saddle
Kramer’s law, plateau (\) in logarithmic scalgbase 10 versusy.
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FIG. 4. Quasipotential height at basin boundarescape en- FIG. 5. Escape path and chaotic saddle #o¢5.0. The saddle
ergy) divided by the ratios of the sizes of the basins of attradtibn  point on the basin boundary is shown as *.
no. of initial conditionsA/(A+B)]. The curves correspond to a
smaller frame of reference from top to bottom, with the
values xe[—-10.0,10.0,ye[—-10.0,10.9 (marked with [J);  yields a pronounced minimum at~5.0 for all three curves,
xe[-5.05.0ye[-7.0,70 (marked with A); and thus confirming the essential role in lowering the escape en-
xe[—3.0,2.0,y e[ —3.5,4.0 (marked with *); respectively. ergy played by the chaotic saddle.

The most probable escape pdth,22] for »=5.0 is
shown, together with the chaotic saddle, in Fig. 5. For this
sponds to the distance between the basin boundary and tharameter value, there is a stable period-4 solution. As can
chaotic saddle, whereas the height of the saddle is related ise seen, the trajectory jumps at first directly on points of the
the distance between the attractor and the saddle. chaotic saddle, moves secondly along points of the chaotic

The mechanism of the escape process is closely connectegddle for some iterations, until it is thirdly transported close
to the existence of an embedded chaotic saddle. It consists @f the basin boundary to the saddle point. Since the first step
two steps, namely a noise-induced fluctuation from the at{from fixed point to saddleand the last steffrom saddle to
tractor (state A) to the chaotic saddle, and then from the the basin boundajyare minimal in this case, the enhance-
chaotic saddle to the fixed poifgtateB) via the saddle point ment is maximal. Other values of the Ikeda map, where no
on the boundary. The escape can also be incomplete, as tbhaotic saddle is present, have been investigated as well. For
trajectory may fall back from the chaotic saddle to the attracthese parameter values, the effect could not be found, and the
tor. In a successful escape, the chaotic saddle acts asgsaphs corresponding to Fig. 4 have a strictly monotonic
“shortcut,” as its presence lowers the overall escape energshape. This demonstrates that the existence of the chaotic
This behavior seems to be especially pronounced if the chaaddle is of crucial importance for the occurrence of the en-
otic saddle is closer to the basin boundary than to the attractancement of noise-induced escape.
tor (compare the region 367<4.5 of Fig. 3. Let us note Moreover, the stability of a fixed point is determined by
that for »=5.5, it is not clear if there exists a chaotic saddle,its eigenvalues. The eigenvalues are found to\be0.9 for
which is the case for all other values §&3.6397 we have the whole range in which it exists. Consequently, the linear
tested. The PIM-triple method, as well as the quasipotentialapproximation is of no relevance to the noise-induced escape
yield for »=5.5 no conclusive result, as a chaotic saddleproblem, as its range of validity is much smaller than the
may existvery closeto the chaotic attractor and numerically region for the escape, which is the whole open set of the
it is very difficult to distinguish between the two. basin of attraction shown in Fig. 1.

It is important to quantify the influence of the relative  To conclude, we have demonstrated the effect of enhance-
sizes of the basins of attraction, since it is increasing withment of noise-induced escape through the existence of a cha-
increasingny and here we are only interested in the change obtic saddle in the open neighborhood of the metastable state
activation energy caused by the chaotic saddle. The distander the Ikeda map as a parameter is varied. Employing the
between the attractor and the saddle point on the boundary ikeory of quasipotentials, it was possible to understand this
usually proportional to the relative size of the basin. Bothlowering of the escape threshold. We stress that the reported
guantities are expected to play a role in the stability of themechanism of the lowering of the escape energy is of a
metastable state located in the basin, although we are nqualitatively different nature from a recently found effect,
aware of any theoretical work dealing with this relation di- where also an enhancement of noise-induced escape through
rectly. To compensate for the change of escape energy causgdnsient motior{typical for chaotic saddleshas been found
by the increase in size of the basin of attraction, in Fig. 4 thd16]. In this scenario, a nonadiabatically, periodically driven
escape energy is divided by the ratio of the size of the basisystem exhibits a facilitation of noise-induced interwell tran-
of attraction of statéA to the overall areaA+ B) for three  sitions. This occurs because the basin boundary becomes
different sections of the phase space. The sections of thieactal and the distance between the two states is effectively
phase space decrease from top to bottom. The combinatiaeduced. In the mechanism reported here, we always have a
of the two quantities—potential height and basin size—smooth basin boundary between the two states and the cha-
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otic saddle is embedded in the basin of one state, not in thdicted to occur in a variety of systems, and should be
basin boundary between the states. The analysis of the exagbservable experimentally.

escape path on the chaotic saddle, in contrast to the case in ) )
which the trajectory leaves via a single periodic ofit], We acknowledge A. Hamm, D. Luchinsky, and S. Beri
will be presented in a much broader fashion in a future pubfor valuable discussions and A. Hamm also for the help in
lication [28]. The reported phenomenon is of general rel-programming. This work was supported by the DFG and
evance for many physical and chemical problems. It is preiNTAS.
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